Math Challenges


At the beginning of each month a Math challenge will come out.

To solve the challenge correctly, you have to:

      • Write the solution with an explanation on a paper with your name and group and left it in the mailbox situated in the hall, before the first day of the following month.
      • Write the reasoned solution in this website (at the bottom of the article).

There will be 3 categories: 

  • Pupils (ESO, Batxillerat and Professional Studies).
  • Teachers and PAS.
  • Web visitors.

The winners will get an award the day of Sta. Georgina.

Mars challenge

A racer is training running up a mountain next to a cableway.

Every 4 seconds the racer intersects with a cabin that goes down and every 12 seconds a cabin that goes up advances the corridor. Knowing that both, the speed of the cabins and the racer, are constant, what is the exit frequency of the cabins?


February challenge

We have a square of 125 cmof area, divided into five parts of equal area: four squares and one L-shaped figure, as you can see in the attached figure:

What is the length of the shortest side in the L-shaped figure?

February solution:


February winners:

Pupils: Elisenda B. (1r Batx C), Sara M. (1r Batx C),Héctor C. (1r Batx C), Anna R. (1r Batx C), Àlex de los S. (1r Batx C), Pau G. (1r Batx C) i Àlex B. (2n Batx C)

Teachers:  Núria B. i Enric M.

January challenge

January solution:

January winners:

Pupils: Àlex de los S., Pau G., Hèctor C., Elisenda B., Anna R. i Sara M. de 1r de Batx. C.

Teachers: Paco R.,i Enric M.

December challenge

To write the angles of a triangle we have used these six numbers: 7, 7, 7, 4, 5 and 6.

We know that an angle is 20 degrees greater than another.How much measure the angles of this triangle?

December solution:

The angles are: 57, 77, 460

December winners:

Pupils: M., Anna R., Núria P., Hector C. and Elisenda B. (1r d’ESO) and  Àlex de los S. de 1r de Batx. C., Àlex B. (2n de Batx. C).

Teachers: Núria B., Paco R., Enric M. and Jaume P.

November challenge

How many numbers of 5 different figures fulfill that the number of the units is the sum of the remaining four?

November solution:

We only have 7 combinations of 4 digit different numbers that add 6, 7, 8 or 9. The permutations of 4! are 24 (less 1/4 of that quantity because we don’t count the “0″ in the first position, and “0″ is in all the combinations: 18).
So 7×18=126

November winners:

  • Pupils:          Laia B., Elisenda B., Anna R., Sara M., Alex de los S and Hector C. (1r Batx) and Alex Batlle (2n Batx).
  • Teachers:    Enric M. and Paco R.

October challenge

October winners:

  • Teachers: Carme B., Paco R., Núria B., Enric M., Jaume P., Begoña M. and Carme B.
  • Pupils: Noah Byrne (3r ESO) , Albert C.(de 4t d’ESO), Mario B., Núria P., Anna R., Hug C., Òscar Á., Arnau  V., Queralt R., Héctor C., Laura B., Roger C., Adriàn G., Elisenda B., Laia B., Pau G., Clara S., Sara M., Quim V. and Alex de los S. (1r de Batx.) and  Víctor V. Sergi T., Ricard P., Lucia M., Àlex B., Guillem C. and Guillem C. (2n Batx),      



Leave a Reply to admin

Si vols una imatge per mostrar amb el teu comentari, ves a Gravatar.